首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5252篇
  免费   388篇
  国内免费   1篇
  2023年   11篇
  2021年   76篇
  2020年   42篇
  2019年   46篇
  2018年   52篇
  2017年   65篇
  2016年   113篇
  2015年   189篇
  2014年   202篇
  2013年   258篇
  2012年   355篇
  2011年   357篇
  2010年   229篇
  2009年   194篇
  2008年   303篇
  2007年   277篇
  2006年   261篇
  2005年   299篇
  2004年   252篇
  2003年   283篇
  2002年   265篇
  2001年   78篇
  2000年   55篇
  1999年   86篇
  1998年   87篇
  1997年   67篇
  1996年   52篇
  1995年   47篇
  1994年   54篇
  1993年   58篇
  1992年   77篇
  1991年   49篇
  1990年   50篇
  1989年   39篇
  1988年   52篇
  1987年   41篇
  1986年   27篇
  1985年   47篇
  1984年   53篇
  1983年   28篇
  1982年   37篇
  1981年   45篇
  1980年   36篇
  1979年   25篇
  1978年   30篇
  1977年   26篇
  1976年   19篇
  1974年   23篇
  1973年   11篇
  1961年   11篇
排序方式: 共有5641条查询结果,搜索用时 31 毫秒
991.
Much effort has been expended to improve irrigation efficiency and drought tolerance of agronomic crops; however, a clear understanding of the physiological mechanisms that interact to decrease source strength and drive yield loss has not been attained. To elucidate the underlying mechanisms contributing to inhibition of net carbon assimilation under drought stress, three cultivars of Gossypium hirsutum were grown in the field under contrasting irrigation regimes during the 2012 and 2013 growing season near Camilla, Georgia, USA. Physiological measurements were conducted on three sample dates during each growing season (providing a broad range of plant water status) and included, predawn and midday leaf water potential (ΨPD and ΨMD), gross and net photosynthesis, dark respiration, photorespiration, and chlorophyll a fluorescence. End-of-season lint yield was also determined. ΨPD ranged from −0.31 to −0.95 MPa, and ΨMD ranged from −1.02 to −2.67 MPa, depending upon irrigation regime and sample date. G. hirsutum responded to water deficit by decreasing stomatal conductance, increasing photorespiration, and increasing the ratio of dark respiration to gross photosynthesis, thereby limiting PN and decreasing lint yield (lint yield declines observed during the 2012 growing season only). Conversely, even extreme water deficit, causing a 54% decline in PN, did not negatively affect actual quantum yield, maximum quantum yield, or photosynthetic electron transport. It is concluded that PN is primarily limited in drought-stressed G. hirsutum by decreased stomatal conductance, along with increases in respiratory and photorespiratory carbon losses, not inhibition or down-regulation of electron transport through photosystem II. It is further concluded that ΨPD is a reliable indicator of drought stress and the need for irrigation in field-grown cotton.  相似文献   
992.
Ecology of bees (Hymenoptera, Apiformes) is entirely constrained by the centralized exchange between the nest and its environment. Herein, we investigate the ecological meaning of the flight activity of honeybees (Apis mellifera L.) at the entrance of the nest, and assessed whether this simple metric can be used as a proxy to infer on the colony state (population size and foraging activity). Theory predicts that flight activity of a colony should increase (1) with population size (density-dependence hypothesis), (2) with floral resource availability (optimal foraging hypothesis), and (3) with the flight activity during previous hours or days, due to a temporal autocorrelation (behavioural inertia hypothesis). We built and compared series of explanatory models for the flight activity measured at the entrance of hives, and its two visible components, namely bees with and without pollen loads. Data were collected on 26 honeybee colonies, both before and after a translocation into a new environment with controlled floral resource availability in order to distinguish among the respective contributions of explanatory factors. Current flight activity was consistently and positively influenced by previous flight activity as well as by the current resource availability. To our knowledge, this represents the first characterization of behavioural inertia in the context of a collective behaviour. Population size only influenced flight activity of bees without pollen loads. We discuss the limits of using simple counts of flying bees at the hive entrance to infer the colony state.  相似文献   
993.

Background and Aims

The interaction between forest fragmentation and predicted climate change may pose a serious threat to tree populations. In small and spatially isolated forest fragments, increased homozygosity may directly affect individual tree fitness through the expression of deleterious alleles. Climate change-induced drought stress may exacerbate these detrimental genetic consequences of forest fragmentation, as the fitness response to low levels of individual heterozygosity is generally thought to be stronger under environmental stress than under optimal conditions.

Methods

To test this hypothesis, a greenhouse experiment was performed in which various transpiration and growth traits of 6-month-old seedlings of Quercus robur differing in multilocus heterozygosity (MLH) were recorded for 3 months under a well-watered and a drought stress treatment. Heterozygosity–fitness correlations (HFC) were examined by correlating the recorded traits of individual seedlings to their MLH and by studying their response to drought stress.

Key Results

Weak, but significant, effects of MLH on several fitness traits were obtained, which were stronger for transpiration variables than for the recorded growth traits. High atmospheric stress (measured as vapour pressure deficit) influenced the strength of the HFCs of the transpiration variables, whereas only a limited effect of the irrigation treatment on the HFCs was observed.

Conclusions

Under ongoing climate change, increased atmospheric stress in the future may strengthen the negative fitness responses of trees to low MLH. This indicates the necessity to maximize individual multilocus heterozygosity in forest tree breeding programmes.  相似文献   
994.
Talin serves an essential function during integrin-mediated adhesion in linking integrins to actin via the intracellular adhesion complex. In addition, the N-terminal head domain of talin regulates the affinity of integrins for their ECM-ligands, a process known as inside-out activation. We previously showed that in Drosophila, mutating the integrin binding site in the talin head domain resulted in weakened adhesion to the ECM. Intriguingly, subsequent studies showed that canonical inside-out activation of integrin might not take place in flies. Consistent with this, a mutation in talin that specifically blocks its ability to activate mammalian integrins does not significantly impinge on talin function during fly development. Here, we describe results suggesting that the talin head domain reinforces and stabilizes the integrin adhesion complex by promoting integrin clustering distinct from its ability to support inside-out activation. Specifically, we show that an allele of talin containing a mutation that disrupts intramolecular interactions within the talin head attenuates the assembly and reinforcement of the integrin adhesion complex. Importantly, we provide evidence that this mutation blocks integrin clustering in vivo. We propose that the talin head domain is essential for regulating integrin avidity in Drosophila and that this is crucial for integrin-mediated adhesion during animal development.  相似文献   
995.
Strong social bonds can make an important contribution to individual fitness, but we still have only a limited understanding of the temporal period relevant to the adjustment of social relationships. While there is growing recognition of the importance of strong bonds that persist for years, social relationships can also vary over weeks and months, suggesting that social strategies may be optimized over shorter timescales. Using biological market theory as a framework, we explore whether temporal variation in the benefits of social relationships might be sufficient to generate daily adjustments of social strategies in wild baboons. Data on grooming, one measure of social relationships, were collected from 60 chacma baboons (Papio ursinus) across two troops over a six month period. Our analyses suggest that social strategies can show diurnal variation, with subordinates preferentially grooming more dominant individuals earlier in the day compared with later in the day. These findings indicate that group-living animals may optimize certain elements of their social strategies over relatively short time periods.  相似文献   
996.
997.
Dittrichia graveolens is a rapidly spreading invasive plant in California. While populations are observed primarily in disturbed areas, there is concern it may expand into adjacent undisturbed areas, particularly grasslands and riparian corridors. In a field experiment conducted in two successive years, we compared plant growth and phenological development of fall, winter, and spring sown seeds. Plants establish equally well in disturbed upland sites in both above and below average precipitation years but the absence of late spring rainfall negatively affected total plant biomass. In a greenhouse experiment, we compared growth in four light environments (100, 50, 27 and 9 % available light). Total plant growth decreased exponentially with decreasing light. This suggests that D. graveolens is not competitive in low light environments, such as woodlands and riparian forests. All plants flowered in early- to mid-September, coinciding with flowering in field grown plants, suggesting that photoperiod is the primary signal for reproductive growth. Using a minirhizotron system, we measured root growth over time in D. graveolens and three common California annual grassland species, two non-natives, Centaurea solstitialis and Bromus hordeaceus, and the native forb Holocarpha virgata. Root growth of D. graveolens began later in the season than the other species, reaching depths >1 m by late May. Roots of C. solstitialis and H. virgata reached >1 m earlier in the season. The temporal difference in root growth suggests that D. graveolens may be less competitive for soil moisture with other early season annuals than other deep-rooted broadleaf species found in grasslands.  相似文献   
998.
999.

Background

Systemic hypertension may be associated with an increased pulmonary vascular resistance, which we hypothesized could be, at least in part, mediated by increased leptin.

Methods

Vascular reactivity to phenylephrine (1 μmol/L), endothelin-1 (10 nmol/L) and leptin (0.001–100 nmol/L) was evaluated in endothelium-intact and -denuded isolated thoracic aorta and pulmonary arteries from spontaneously hypertensive versus control Wistar rats. Arteries were sampled for pathobiological evaluation and lung tissue for morphometric evaluation.

Results

In control rats, endothelin-1 induced a higher level of contraction in the pulmonary artery than in the aorta. After phenylephrine or endothelin-1 precontraction, leptin relaxed intact pulmonary artery and aortic rings, while no response was observed in denuded arteries. Spontaneously hypertensive rats presented with increased reactivity to phenylephrine and endothelin-1 in endothelium-intact pulmonary arteries. After endothelin-1 precontraction, endothelium-dependent relaxation to leptin was impaired in pulmonary arteries from hypertensive rats. In both strains of rats, aortic segments were more responsive to leptin than pulmonary artery. In hypertensive rats, pulmonary arteries exhibited increased pulmonary artery medial thickness, associated with increased expressions of preproendothelin-1, endothelin-1 receptors type A and B, inducible nitric oxide synthase and decreased endothelial nitric oxide synthase, together with decreased leptin receptor and increased suppressor of cytokine signaling 3 expressions.

Conclusions

Altered pulmonary vascular reactivity in hypertension may be related to a loss of endothelial buffering of vasoconstriction and decreased leptin-induced vasodilation in conditions of increased endothelin-1.  相似文献   
1000.
With more than 150,000 species, parasitoids are a large group of hymenopteran insects that inject venom into and then lay their eggs in or on other insects, eventually killing the hosts. Their venoms have evolved into different mechanisms for manipulating host immunity, physiology and behavior in such a way that enhance development of the parasitoid young. The venom from the ectoparasitoid Nasonia vitripennis inhibits the immune system in its host organism in order to protect their offspring from elimination. Since the major innate immune pathways in insects, the Toll and Imd pathways, are homologous to the NF-κB pathway in mammals, we were interested in whether a similar immune suppression seen in insects could be elicited in a mammalian cell system. A well characterized NF-κB reporter gene assay in fibrosarcoma cells showed a dose-dependent inhibition of NF-κB signaling caused by the venom. In line with this NF-κB inhibitory action, N. vitripennis venom dampened the expression of IL-6, a prototypical proinflammatory cytokine, from LPS-treated macrophages. The venom also inhibited the expression of two NF-κB target genes, IκBα and A20, that act in a negative feedback loop to prevent excessive NF-κB activity. Surprisingly, we did not detect any effect of the venom on the early events in the canonical NF-κB activation pathway, leading to NF-κB nuclear translocation, which was unaltered in venom-treated cells. The MAP kinases ERK, p38 and JNK are other crucial regulators of immune responses. We observed that venom treatment did not affect p38 and ERK activation, but induced a prolonged JNK activation. In summary, our data indicate that venom from N. vitripennis inhibits NF-κB signaling in mammalian cells. We identify venom-induced up regulation of the glucocorticoid receptor-regulated GILZ as a most likely molecular mediator for this inhibition.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号